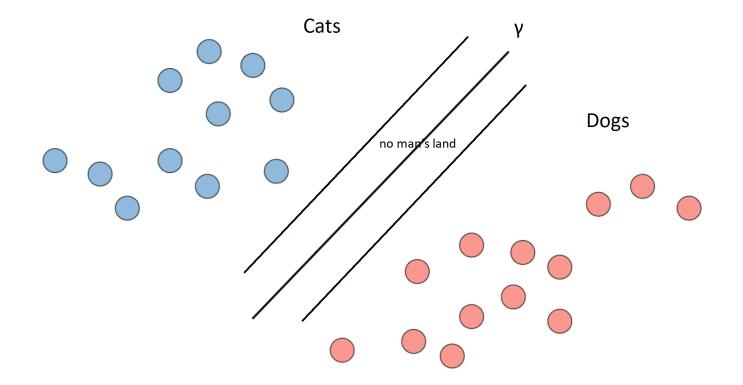
L15 – Week 8 Introduction to Statistical Learning Theory

CS 295 Optimization for Machine Learning Ioannis Panageas

Linear Prediction



• Goal. Compute a vector *w* that separates the two classes.

The Perceptron Algorithm

Given $(x_1, y_1), ..., (x_T, y_T) \in X \times \{\pm 1\}$ where we assume $||x_t|| = 1$ for all t. Formally γ is defined

$$\gamma := \max_{w: \|w\|=1} \min_{i \in [T]} (y_i w^\top x_i)_+,$$

where $(a)_{+} = \max(a, 0)$.

The Perceptron Algorithm

Given $(x_1, y_1), \dots, (x_T, y_T) \in X \times \{\pm 1\}$ where we assume $||x_t|| = 1$ for all t. Formally γ is defined

$$\gamma := \max_{w: \|w\|=1} \min_{i \in [T]} (y_i w^\top x_i)_+,$$

where $(a)_{+} = \max(a, 0)$.

Definition (Perceptron). *Consider the following iterative algorithm:*

- 1. Initialize $w_1 = 0$ (hypothesis)
- 2. On round t=1 \dots T
- 3. Consider (x_t, y_t) and form prediction $\hat{y}_t = \operatorname{sign}(w_t^{\top} x_t)$.
- 4. If $\hat{y}_t \neq y_t$

5.
$$w_{t+1} = w_t + y_t x_t$$
.

6. **Else** $w_{t+1} = w_t$.

Theorem (# Corrections). Perceptron makes at most $1/\gamma^2$ mistakes and corrections on any sequence with margin γ .

Proof. Let *m* the number of mistakes after *T* iterations. If a mistake is made at round *t* then

$$|w_{t+1}||_2^2 = ||w_t + y_t x_t||_2^2$$

Theorem (# Corrections). Perceptron makes at most $1/\gamma^2$ mistakes and corrections on any sequence with margin γ .

Proof. Let *m* the number of mistakes after *T* iterations. If a mistake is made at round *t* then

$$|w_{t+1}||_{2}^{2} = ||w_{t} + y_{t}x_{t}||_{2}^{2}$$
$$= ||w_{t}||_{2}^{2} + ||x_{t}||_{2}^{2} + \underbrace{2y_{t}x_{t}^{\top}w_{t}}_{\text{negative}}$$

Theorem (# Corrections). Perceptron makes at most $1/\gamma^2$ mistakes and corrections on any sequence with margin γ .

Proof. Let *m* the number of mistakes after *T* iterations. If a mistake is made at round *t* then

$$|w_{t+1}||_{2}^{2} = ||w_{t} + y_{t}x_{t}||_{2}^{2}$$

= $||w_{t}||_{2}^{2} + ||x_{t}||_{2}^{2} + \underbrace{2y_{t}x_{t}^{\top}w_{t}}_{\text{negative}}$
$$\leq ||w_{t}||_{2}^{2} + 1$$

Theorem (# Corrections). Perceptron makes at most $1/\gamma^2$ mistakes and corrections on any sequence with margin γ .

Proof. Let *m* the number of mistakes after *T* iterations. If a mistake is made at round *t* then

$$\|w_{t+1}\|_{2}^{2} = \|w_{t} + y_{t}x_{t}\|_{2}^{2}$$

= $\|w_{t}\|_{2}^{2} + \|x_{t}\|_{2}^{2} + \underbrace{2y_{t}x_{t}^{\top}w_{t}}_{\text{negative}}$
$$\leq \|w_{t}\|_{2}^{2} + 1$$

Therefore $||w_T||_2^2 \leq m$.

Proof cont. Consider a vector w^* with margin γ .

By definition of γ for all *t* that there is a mistake

$$\gamma \leq y_t w^{* \top} x_t = w^{* \top} (w_{t+1} - w_t).$$

Proof cont. Consider a vector w^* with margin γ .

By definition of γ for all *t* that there is a mistake

$$\gamma \leq y_t w^* \,^\top x_t = w^* \,^\top (w_{t+1} - w_t).$$

By adding the above we also have that

$$m\gamma \le w^{* \top}(w_T - w_1) = w^{* \top}w_T,$$

 $\le ||w_T||_2.$

Proof cont. Consider a vector w^* with margin γ .

By definition of γ for all *t* that there is a mistake

$$\gamma \leq y_t w^{* \top} x_t = w^{* \top} (w_{t+1} - w_t).$$

By adding the above we also have that

$$m\gamma \leq w^{* \top}(w_T - w_1) = w^{* \top}w_T,$$
$$\leq \|w_T\|_2.$$

Therefore $m\gamma \leq ||w_T||_2 \leq \sqrt{m}$.

What we really showed is that given $(x_1, y_1), ..., (x_T, y_T) \in X \times \{\pm 1\}$ where we assume $||x_t|| = 1$ for all t it holds

$$\sum_{t=1}^T \mathbf{1}_{y_t w_t^ op x_t \leq 0} \leq rac{1}{\gamma^2}.$$

Given $(x_1, y_1), \dots, (x_n, y_n) \in X \times \{\pm 1\}$ IID from some distribution *P*.

Run perceptron algorithm and consider $w_1, ..., w_n$. Then choose w uniformly at random from $\{w_1, ..., w_n\}$. This is good enough...

What we really showed is that given $(x_1, y_1), ..., (x_T, y_T) \in X \times \{\pm 1\}$ where we assume $||x_t|| = 1$ for all t it holds

$$\sum_{t=1}^T \mathbf{1}_{y_t w_t^ op x_t \leq 0} \leq rac{1}{\gamma^2}.$$

Given $(x_1, y_1), \dots, (x_n, y_n) \in X \times \{\pm 1\}$ IID from some distribution *P*.

Run perceptron algorithm and consider $w_1, ..., w_n$. Then choose w uniformly at random from $\{w_1, ..., w_n\}$. This is good enough...

Theorem (IID Data). Let w be the choice of the algorithm. It holds that

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{y_{i}w^{\top}x_{i}\leq0}\right]\leq\frac{1}{n}\mathbb{E}\left[\frac{1}{\gamma^{2}}\right]$$

Proof. We have proved from before that (and taking expectations)

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{y_{i}w_{i}^{\top}x_{i}\leq0}\right]\leq\mathbb{E}\left[\frac{1}{n\gamma^{2}}\right]$$

Let $S = ((x_1, y_1), ..., (x_n, y_n))$. The LHS can be expressed as

$$\mathbb{E}_{\tau}\mathbb{E}_{S}\left[\mathbf{1}_{y_{\tau}w_{\tau}^{\top}x_{\tau}\leq 0}\right] = \mathbb{E}_{S}\mathbb{E}_{\tau}\left[\mathbf{1}_{y_{\tau}w_{\tau}^{\top}x_{\tau}\leq 0}\right].$$

Proof. We have proved from before that (and taking expectations)

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{y_{i}w_{i}^{\top}x_{i}\leq0}\right]\leq\mathbb{E}\left[\frac{1}{n\gamma^{2}}\right]$$

Let $S = ((x_1, y_1), ..., (x_n, y_n))$. The LHS can be expressed as

$$\mathbb{E}_{\tau}\mathbb{E}_{S}\left[\mathbf{1}_{y_{\tau}w_{\tau}^{\top}x_{\tau}\leq 0}\right] = \mathbb{E}_{S}\mathbb{E}_{\tau}\left[\mathbf{1}_{y_{\tau}w_{\tau}^{\top}x_{\tau}\leq 0}\right].$$

Observe now that w_{τ} depends only on $(x_1, y_1), ..., (x_{\tau-1}, y_{\tau-1})$, hence

$$\mathbb{E}_{S}\mathbb{E}_{\tau}\left[\mathbf{1}_{y_{\tau}w_{\tau}^{\top}x_{\tau}\leq 0}\right] = \mathbb{E}_{S}\mathbb{E}_{\tau}\mathbb{E}_{(x,y)\sim P}\left[\mathbf{1}_{yw_{\tau}^{\top}x\leq 0}\right] = \mathbb{E}_{S}\mathbb{E}_{\tau}[L_{0-1}(w_{\tau})]$$

Remark: If we keep iterating perceptron algorithm we finally get $L_{0-1}(w_T) = 0$ (how many steps?) where $L_{0-1}(w) = \frac{1}{n} \sum_i \mathbf{1}_{y_i w^\top x_i \le 0}$

PAC Learning

Assume we are given:

- Domain set \mathcal{X} . Typically \mathbb{R}^d or $\{0,1\}^d$. Think of 32x32 pixel images.
- Label set \mathcal{Y} , typically binary like $\{0,1\}$ or $\{-1,+1\}$.
- A concept class $C = \{h : h : \mathcal{X} \to \mathcal{Y}\}.$

Given a learning problem, we analyse the performance of a learning algorithm:

- Training data $S = (x_1, y_1), ..., (x_m, y_m)$, where sample *S* was generated by drawing *m* IID samples from the distribution *D*.
- Output a hypothesis from a hypothesis class *H* = {*h* : *h* : *X* → *Y*} of target functions.

PAC Learning

Assume we are given:

- Domain set \mathcal{X} . Typically \mathbb{R}^d or $\{0,1\}^d$. Think of 32x32 pixel images.
- Label set \mathcal{Y} , typically binary like $\{0,1\}$ or $\{-1,+1\}$.
- A concept class $C = \{h : h : X \to Y\}$.

Given a learning problem, we analyse the performance of a learning algorithm:

- Training data $S = (x_1, y_1), ..., (x_m, y_m)$, where sample *S* was generated by drawing *m* IID samples from the distribution *D*.
- Output a hypothesis from a hypothesis class *H* = {*h* : *h* : *X* → *Y*} of target functions.

We measure the performance through generalization error that is

$$\operatorname{err}(h) = \mathbb{E}_{(x,y) \sim D}[\ell_{0-1}(h(x), y)].$$

PAC Learning

Definition (PAC learnable). A concept class C of target functions is *PAC learnable* (w.r.t to H) if there exists an algorithm A and function $m_{\mathcal{C}}^{\mathcal{A}}: (0,1)^2 \to \mathbb{N}$ with the following property:

Assume $S = ((x_1, y_1), ..., (x_m, y_m))$ is a sample of IID examples generated by some arbitrary distribution D such that $y_i = h(x_i)$ for some $h \in C$ almost surely. If S is the input of A and $m > m_C^A$ then the algorithm returns a hypothesis $h_S \in \mathcal{H}$ such that, with probability $1 - \delta$ (over the choice of the m training examples):

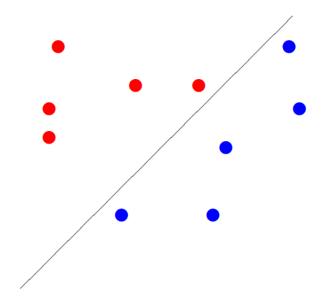
$$\operatorname{err}(h_S) < \epsilon$$

The function $m_{\mathcal{C}}^{\mathcal{A}}$ is referred to as the sample complexity of algorithm A.

Examples

Example 2.2 (Half-spaces). A second example that is of some importance is defined by hyperplane. Here we let the domain be $\chi = \mathbb{R}^d$ for some integer d. For every $\mathbf{w} \in \mathbb{R}^d$, induces a half space by consider all elements \mathbf{x} such that $\mathbf{w} \cdot \mathbf{x} \ge 0$. Thus, we may consider the class of target functions described as follows

$$\mathcal{C} = \{ f_{\mathbf{w}} : \mathbf{w} \in \mathbb{R}^d, f_{\mathbf{w}}(x) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x}) \}$$

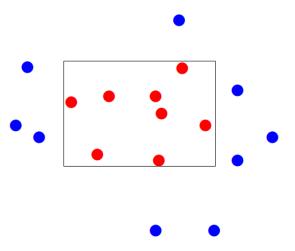


Examples

Example 2.1 (Axis Aligned Rectangles). The first example of a hypothesis class will be of rectangles aligned to the axis. Here we take the domain $\chi = \mathbb{R}^2$ and we let C include be defined by all rectangles that are aligned to the axis. Namely for every (z_1, z_2, z_3, z_4) consider the following function over the plane

$$f_{z_1, z_2, z_3, z_4}(x_1, x_2) = \begin{cases} 1 & z_1 \le x_1 \le z_2, \ z_3 \le x_2 \le z_4 \\ 0 & \text{else} \end{cases}$$

Then $C = \{ f_{z_1, z_2, z_3, z_4} : (z_1, z_2, z_3, z_4) \in \mathbb{R}^4 \}.$



ERM algorithm

Definition (ERM). *Empirical Risk Minimization algorithm is defined as follows:*

Return

 $\arg\min_{h\in\mathcal{H}}\operatorname{err}_{s}(h)$,

where $\operatorname{err}_{s}(h) = \frac{1}{m} \sum \ell_{0-1}(h(x_i), y_i)$

Theorem (Finite classes are PAC learnable). Consider a finite class of target functions $\mathcal{H} = h_1, ..., h_t$ over a domain. Then if size of sample S is $m > \frac{2}{\epsilon^2} \log \frac{2|\mathcal{H}|}{\delta}$ then with probability $1 - \delta$ we have that

$$\max_{h\in\mathcal{H}}|err_{S}(h)-err(h)|<\epsilon.$$

Proof. Applying Hoeffding's inequality we obtain that for every *S* and fixed *h* since $err_S(h)$ is sum of IID bernoulli with expectation err(h):

$$\Pr_{S}[|\operatorname{err}_{S}(h) - \operatorname{err}(h)| > \epsilon] \le 2e^{-2m\epsilon^{2}}.$$

Proof. Applying Hoeffding's inequality we obtain that for every *S* and fixed *h* since $err_S(h)$ is sum of IID bernoulli with expectation err(h):

$$\Pr_{S}[|\operatorname{err}_{S}(h) - \operatorname{err}(h)| > \epsilon] \le 2e^{-2m\epsilon^{2}}$$

Applying union bound we obtain that

$$\Pr_{S}[\exists h: |\operatorname{err}_{S}(h) - \operatorname{err}(h)| > \epsilon] \leq 2|\mathcal{H}|e^{-2m\epsilon^{2}}.$$

Proof. Applying Hoeffding's inequality we obtain that for every *S* and fixed *h* since $err_S(h)$ is sum of IID bernoulli with expectation err(h):

$$\Pr_{S}[|\operatorname{err}_{S}(h) - \operatorname{err}(h)| > \epsilon] \le 2e^{-2m\epsilon^{2}}.$$

Applying union bound we obtain that

$$\Pr_{S}[\exists h: |\operatorname{err}_{S}(h) - \operatorname{err}(h)| > \epsilon] \leq 2|\mathcal{H}|e^{-2m\epsilon^{2}}.$$

We want the RHS to be less than δ . Choose m appropriately!

Proof. Applying Hoeffding's inequality we obtain that for every *S* and fixed *h* since $err_S(h)$ is sum of IID bernoulli with expectation err(h):

$$\Pr_{S}[|\operatorname{err}_{S}(h) - \operatorname{err}(h)| > \epsilon] \le 2e^{-2m\epsilon^{2}}.$$

Applying union bound we obtain that

$$\Pr_{S}[\exists h: |\operatorname{err}_{S}(h) - \operatorname{err}(h)| > \epsilon] \leq 2|\mathcal{H}|e^{-2m\epsilon^{2}}.$$

We want the RHS to be less than δ . Choose m appropriately!

What if the hypothesis class has infinite cardinality?

Conclusion

- Introduction to Statistical Learning.
 - Perceptron Algorithm.
 - Loss functions and PAC learning
 - ERM algorithm
- Next lecture we will talk about VC dimension.